MakeItFrom.com
Menu (ESC)

S32654 Stainless Steel vs. 5051A Aluminum

S32654 stainless steel belongs to the iron alloys classification, while 5051A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S32654 stainless steel and the bottom bar is 5051A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 45
18 to 21
Fatigue Strength, MPa 450
51 to 61
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 590
110
Tensile Strength: Ultimate (UTS), MPa 850
170
Tensile Strength: Yield (Proof), MPa 490
56

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1410
610
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 11
150
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
39
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
130

Otherwise Unclassified Properties

Base Metal Price, % relative 34
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 6.4
8.5
Embodied Energy, MJ/kg 87
150
Embodied Water, L/kg 220
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
24 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 570
23
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 29
17 to 18
Strength to Weight: Bending, points 25
25
Thermal Diffusivity, mm2/s 2.9
63
Thermal Shock Resistance, points 19
7.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
96.1 to 98.6
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 24 to 25
0 to 0.3
Copper (Cu), % 0.3 to 0.6
0 to 0.050
Iron (Fe), % 38.3 to 45.3
0 to 0.45
Magnesium (Mg), % 0
1.4 to 2.1
Manganese (Mn), % 2.0 to 4.0
0 to 0.25
Molybdenum (Mo), % 7.0 to 8.0
0
Nickel (Ni), % 21 to 23
0
Nitrogen (N), % 0.45 to 0.55
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.3
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15