MakeItFrom.com
Menu (ESC)

S32654 Stainless Steel vs. Titanium 6-5-0.5

S32654 stainless steel belongs to the iron alloys classification, while titanium 6-5-0.5 belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S32654 stainless steel and the bottom bar is titanium 6-5-0.5.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 45
6.7
Fatigue Strength, MPa 450
530
Poisson's Ratio 0.28
0.32
Reduction in Area, % 46
23
Shear Modulus, GPa 82
40
Shear Strength, MPa 590
630
Tensile Strength: Ultimate (UTS), MPa 850
1080
Tensile Strength: Yield (Proof), MPa 490
990

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1100
300
Melting Completion (Liquidus), °C 1450
1610
Melting Onset (Solidus), °C 1410
1560
Specific Heat Capacity, J/kg-K 460
550
Thermal Conductivity, W/m-K 11
4.2
Thermal Expansion, µm/m-K 15
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 34
41
Density, g/cm3 8.0
4.5
Embodied Carbon, kg CO2/kg material 6.4
33
Embodied Energy, MJ/kg 87
540
Embodied Water, L/kg 220
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
71
Resilience: Unit (Modulus of Resilience), kJ/m3 570
4630
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 29
67
Strength to Weight: Bending, points 25
52
Thermal Diffusivity, mm2/s 2.9
1.7
Thermal Shock Resistance, points 19
79

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
5.7 to 6.3
Carbon (C), % 0 to 0.020
0 to 0.080
Chromium (Cr), % 24 to 25
0
Copper (Cu), % 0.3 to 0.6
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 38.3 to 45.3
0 to 0.2
Manganese (Mn), % 2.0 to 4.0
0
Molybdenum (Mo), % 7.0 to 8.0
0.25 to 0.75
Nickel (Ni), % 21 to 23
0
Nitrogen (N), % 0.45 to 0.55
0 to 0.050
Oxygen (O), % 0
0 to 0.19
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
85.6 to 90.1
Zirconium (Zr), % 0
4.0 to 6.0
Residuals, % 0
0 to 0.4