MakeItFrom.com
Menu (ESC)

S32654 Stainless Steel vs. C26200 Brass

S32654 stainless steel belongs to the iron alloys classification, while C26200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S32654 stainless steel and the bottom bar is C26200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 45
3.0 to 180
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 82
41
Shear Strength, MPa 590
230 to 390
Tensile Strength: Ultimate (UTS), MPa 850
330 to 770
Tensile Strength: Yield (Proof), MPa 490
110 to 490

Thermal Properties

Latent Heat of Fusion, J/g 310
180
Maximum Temperature: Mechanical, °C 1100
140
Melting Completion (Liquidus), °C 1450
950
Melting Onset (Solidus), °C 1410
920
Specific Heat Capacity, J/kg-K 460
390
Thermal Conductivity, W/m-K 11
120
Thermal Expansion, µm/m-K 15
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
31

Otherwise Unclassified Properties

Base Metal Price, % relative 34
25
Density, g/cm3 8.0
8.2
Embodied Carbon, kg CO2/kg material 6.4
2.7
Embodied Energy, MJ/kg 87
45
Embodied Water, L/kg 220
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
19 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 570
62 to 1110
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 29
11 to 26
Strength to Weight: Bending, points 25
13 to 23
Thermal Diffusivity, mm2/s 2.9
38
Thermal Shock Resistance, points 19
11 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 24 to 25
0
Copper (Cu), % 0.3 to 0.6
67 to 70
Iron (Fe), % 38.3 to 45.3
0 to 0.050
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 2.0 to 4.0
0
Molybdenum (Mo), % 7.0 to 8.0
0
Nickel (Ni), % 21 to 23
0
Nitrogen (N), % 0.45 to 0.55
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.0050
0
Zinc (Zn), % 0
29.6 to 33
Residuals, % 0
0 to 0.3