MakeItFrom.com
Menu (ESC)

S32654 Stainless Steel vs. C36000 Brass

S32654 stainless steel belongs to the iron alloys classification, while C36000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S32654 stainless steel and the bottom bar is C36000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 45
5.8 to 23
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 82
39
Shear Strength, MPa 590
210 to 310
Tensile Strength: Ultimate (UTS), MPa 850
330 to 530
Tensile Strength: Yield (Proof), MPa 490
140 to 260

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1450
900
Melting Onset (Solidus), °C 1410
890
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 11
120
Thermal Expansion, µm/m-K 15
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
29

Otherwise Unclassified Properties

Base Metal Price, % relative 34
23
Density, g/cm3 8.0
8.2
Embodied Carbon, kg CO2/kg material 6.4
2.6
Embodied Energy, MJ/kg 87
45
Embodied Water, L/kg 220
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
25 to 62
Resilience: Unit (Modulus of Resilience), kJ/m3 570
89 to 340
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 29
11 to 18
Strength to Weight: Bending, points 25
13 to 18
Thermal Diffusivity, mm2/s 2.9
37
Thermal Shock Resistance, points 19
11 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 24 to 25
0
Copper (Cu), % 0.3 to 0.6
60 to 63
Iron (Fe), % 38.3 to 45.3
0 to 0.35
Lead (Pb), % 0
2.5 to 3.7
Manganese (Mn), % 2.0 to 4.0
0
Molybdenum (Mo), % 7.0 to 8.0
0
Nickel (Ni), % 21 to 23
0
Nitrogen (N), % 0.45 to 0.55
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.0050
0
Zinc (Zn), % 0
32.5 to 37.5
Residuals, % 0
0 to 0.5