MakeItFrom.com
Menu (ESC)

S32654 Stainless Steel vs. C64210 Bronze

S32654 stainless steel belongs to the iron alloys classification, while C64210 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S32654 stainless steel and the bottom bar is C64210 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 45
35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 82
42
Shear Strength, MPa 590
380
Tensile Strength: Ultimate (UTS), MPa 850
570
Tensile Strength: Yield (Proof), MPa 490
290

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1450
1040
Melting Onset (Solidus), °C 1410
990
Specific Heat Capacity, J/kg-K 460
430
Thermal Conductivity, W/m-K 11
48
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
14

Otherwise Unclassified Properties

Base Metal Price, % relative 34
29
Density, g/cm3 8.0
8.4
Embodied Carbon, kg CO2/kg material 6.4
3.0
Embodied Energy, MJ/kg 87
49
Embodied Water, L/kg 220
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
170
Resilience: Unit (Modulus of Resilience), kJ/m3 570
360
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 29
19
Strength to Weight: Bending, points 25
18
Thermal Diffusivity, mm2/s 2.9
13
Thermal Shock Resistance, points 19
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
6.3 to 7.0
Arsenic (As), % 0
0 to 0.15
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 24 to 25
0
Copper (Cu), % 0.3 to 0.6
89 to 92.2
Iron (Fe), % 38.3 to 45.3
0 to 0.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 2.0 to 4.0
0 to 0.1
Molybdenum (Mo), % 7.0 to 8.0
0
Nickel (Ni), % 21 to 23
0 to 0.25
Nitrogen (N), % 0.45 to 0.55
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
1.5 to 2.0
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5