MakeItFrom.com
Menu (ESC)

S33228 Stainless Steel vs. 7076 Aluminum

S33228 stainless steel belongs to the iron alloys classification, while 7076 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S33228 stainless steel and the bottom bar is 7076 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
160
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 34
6.2
Fatigue Strength, MPa 170
170
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 79
27
Shear Strength, MPa 380
310
Tensile Strength: Ultimate (UTS), MPa 570
530
Tensile Strength: Yield (Proof), MPa 210
460

Thermal Properties

Latent Heat of Fusion, J/g 310
380
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1410
630
Melting Onset (Solidus), °C 1360
460
Specific Heat Capacity, J/kg-K 470
860
Thermal Expansion, µm/m-K 16
24

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 8.0
3.0
Embodied Carbon, kg CO2/kg material 6.2
8.0
Embodied Energy, MJ/kg 89
150
Embodied Water, L/kg 220
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
31
Resilience: Unit (Modulus of Resilience), kJ/m3 110
1510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 20
49
Strength to Weight: Bending, points 19
48
Thermal Shock Resistance, points 13
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.025
86.9 to 91.2
Carbon (C), % 0.040 to 0.080
0
Cerium (Ce), % 0.050 to 0.1
0
Chromium (Cr), % 26 to 28
0
Copper (Cu), % 0
0.3 to 1.0
Iron (Fe), % 36.5 to 42.3
0 to 0.6
Magnesium (Mg), % 0
1.2 to 2.0
Manganese (Mn), % 0 to 1.0
0.3 to 0.8
Nickel (Ni), % 31 to 33
0
Niobium (Nb), % 0.6 to 1.0
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.3
0 to 0.4
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
7.0 to 8.0
Residuals, % 0
0 to 0.15