MakeItFrom.com
Menu (ESC)

S33228 Stainless Steel vs. 7116 Aluminum

S33228 stainless steel belongs to the iron alloys classification, while 7116 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S33228 stainless steel and the bottom bar is 7116 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 34
7.8
Fatigue Strength, MPa 170
160
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 380
220
Tensile Strength: Ultimate (UTS), MPa 570
370
Tensile Strength: Yield (Proof), MPa 210
330

Thermal Properties

Latent Heat of Fusion, J/g 310
380
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1410
640
Melting Onset (Solidus), °C 1360
520
Specific Heat Capacity, J/kg-K 470
880
Thermal Expansion, µm/m-K 16
24

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 8.0
2.9
Embodied Carbon, kg CO2/kg material 6.2
8.2
Embodied Energy, MJ/kg 89
150
Embodied Water, L/kg 220
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
28
Resilience: Unit (Modulus of Resilience), kJ/m3 110
790
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 20
35
Strength to Weight: Bending, points 19
39
Thermal Shock Resistance, points 13
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.025
91.5 to 94.5
Carbon (C), % 0.040 to 0.080
0
Cerium (Ce), % 0.050 to 0.1
0
Chromium (Cr), % 26 to 28
0
Copper (Cu), % 0
0.5 to 1.1
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 36.5 to 42.3
0 to 0.3
Magnesium (Mg), % 0
0.8 to 1.4
Manganese (Mn), % 0 to 1.0
0 to 0.050
Nickel (Ni), % 31 to 33
0
Niobium (Nb), % 0.6 to 1.0
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.3
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
4.2 to 5.2
Residuals, % 0
0 to 0.15