MakeItFrom.com
Menu (ESC)

S33228 Stainless Steel vs. 850.0 Aluminum

S33228 stainless steel belongs to the iron alloys classification, while 850.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S33228 stainless steel and the bottom bar is 850.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
45
Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 34
7.9
Fatigue Strength, MPa 170
59
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 380
100
Tensile Strength: Ultimate (UTS), MPa 570
140
Tensile Strength: Yield (Proof), MPa 210
76

Thermal Properties

Latent Heat of Fusion, J/g 310
380
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1410
650
Melting Onset (Solidus), °C 1360
370
Specific Heat Capacity, J/kg-K 470
850
Thermal Expansion, µm/m-K 16
23

Otherwise Unclassified Properties

Base Metal Price, % relative 37
14
Density, g/cm3 8.0
3.1
Embodied Carbon, kg CO2/kg material 6.2
8.5
Embodied Energy, MJ/kg 89
160
Embodied Water, L/kg 220
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
9.1
Resilience: Unit (Modulus of Resilience), kJ/m3 110
42
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 24
44
Strength to Weight: Axial, points 20
12
Strength to Weight: Bending, points 19
19
Thermal Shock Resistance, points 13
6.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.025
88.3 to 93.1
Carbon (C), % 0.040 to 0.080
0
Cerium (Ce), % 0.050 to 0.1
0
Chromium (Cr), % 26 to 28
0
Copper (Cu), % 0
0.7 to 1.3
Iron (Fe), % 36.5 to 42.3
0 to 0.7
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 31 to 33
0.7 to 1.3
Niobium (Nb), % 0.6 to 1.0
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.3
0 to 0.7
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
5.5 to 7.0
Titanium (Ti), % 0
0 to 0.2
Residuals, % 0
0 to 0.3