MakeItFrom.com
Menu (ESC)

S33228 Stainless Steel vs. A384.0 Aluminum

S33228 stainless steel belongs to the iron alloys classification, while A384.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S33228 stainless steel and the bottom bar is A384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
74
Elongation at Break, % 34
2.5
Fatigue Strength, MPa 170
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
28
Shear Strength, MPa 380
200
Tensile Strength: Ultimate (UTS), MPa 570
330
Tensile Strength: Yield (Proof), MPa 210
170

Thermal Properties

Latent Heat of Fusion, J/g 310
550
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1410
610
Melting Onset (Solidus), °C 1360
510
Specific Heat Capacity, J/kg-K 470
880
Thermal Expansion, µm/m-K 16
21

Otherwise Unclassified Properties

Base Metal Price, % relative 37
11
Density, g/cm3 8.0
2.8
Embodied Carbon, kg CO2/kg material 6.2
7.5
Embodied Energy, MJ/kg 89
140
Embodied Water, L/kg 220
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 110
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 20
32
Strength to Weight: Bending, points 19
38
Thermal Shock Resistance, points 13
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.025
79.3 to 86.5
Carbon (C), % 0.040 to 0.080
0
Cerium (Ce), % 0.050 to 0.1
0
Chromium (Cr), % 26 to 28
0
Copper (Cu), % 0
3.0 to 4.5
Iron (Fe), % 36.5 to 42.3
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.5
Nickel (Ni), % 31 to 33
0 to 0.5
Niobium (Nb), % 0.6 to 1.0
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.3
10.5 to 12
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.35
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5