MakeItFrom.com
Menu (ESC)

S33228 Stainless Steel vs. C66200 Brass

S33228 stainless steel belongs to the iron alloys classification, while C66200 brass belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is S33228 stainless steel and the bottom bar is C66200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
8.0 to 15
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
42
Shear Strength, MPa 380
270 to 300
Tensile Strength: Ultimate (UTS), MPa 570
450 to 520
Tensile Strength: Yield (Proof), MPa 210
410 to 480

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1410
1070
Melting Onset (Solidus), °C 1360
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Expansion, µm/m-K 16
18

Otherwise Unclassified Properties

Base Metal Price, % relative 37
29
Density, g/cm3 8.0
8.7
Embodied Carbon, kg CO2/kg material 6.2
2.7
Embodied Energy, MJ/kg 89
43
Embodied Water, L/kg 220
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
40 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 110
760 to 1030
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
14 to 17
Strength to Weight: Bending, points 19
15 to 16
Thermal Shock Resistance, points 13
16 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.025
0
Carbon (C), % 0.040 to 0.080
0
Cerium (Ce), % 0.050 to 0.1
0
Chromium (Cr), % 26 to 28
0
Copper (Cu), % 0
86.6 to 91
Iron (Fe), % 36.5 to 42.3
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 31 to 33
0.3 to 1.0
Niobium (Nb), % 0.6 to 1.0
0
Phosphorus (P), % 0 to 0.020
0.050 to 0.2
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.2 to 0.7
Zinc (Zn), % 0
6.5 to 12.9
Residuals, % 0
0 to 0.5