MakeItFrom.com
Menu (ESC)

S33228 Stainless Steel vs. C71520 Copper-nickel

S33228 stainless steel belongs to the iron alloys classification, while C71520 copper-nickel belongs to the copper alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S33228 stainless steel and the bottom bar is C71520 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 34
10 to 45
Poisson's Ratio 0.28
0.33
Rockwell B Hardness 82
35 to 86
Shear Modulus, GPa 79
51
Shear Strength, MPa 380
250 to 340
Tensile Strength: Ultimate (UTS), MPa 570
370 to 570
Tensile Strength: Yield (Proof), MPa 210
140 to 430

Thermal Properties

Latent Heat of Fusion, J/g 310
230
Maximum Temperature: Mechanical, °C 1100
260
Melting Completion (Liquidus), °C 1410
1170
Melting Onset (Solidus), °C 1360
1120
Specific Heat Capacity, J/kg-K 470
400
Thermal Expansion, µm/m-K 16
15

Otherwise Unclassified Properties

Base Metal Price, % relative 37
40
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 6.2
5.0
Embodied Energy, MJ/kg 89
73
Embodied Water, L/kg 220
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
54 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 110
67 to 680
Stiffness to Weight: Axial, points 14
8.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
12 to 18
Strength to Weight: Bending, points 19
13 to 17
Thermal Shock Resistance, points 13
12 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.025
0
Carbon (C), % 0.040 to 0.080
0 to 0.050
Cerium (Ce), % 0.050 to 0.1
0
Chromium (Cr), % 26 to 28
0
Copper (Cu), % 0
65 to 71.6
Iron (Fe), % 36.5 to 42.3
0.4 to 1.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 31 to 33
28 to 33
Niobium (Nb), % 0.6 to 1.0
0
Phosphorus (P), % 0 to 0.020
0 to 0.2
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.015
0 to 0.020
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5