MakeItFrom.com
Menu (ESC)

S35045 Stainless Steel vs. EN 1.1191 Steel

Both S35045 stainless steel and EN 1.1191 steel are iron alloys. They have a modest 37% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S35045 stainless steel and the bottom bar is EN 1.1191 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
16 to 17
Fatigue Strength, MPa 170
210 to 290
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
72
Shear Strength, MPa 370
380 to 430
Tensile Strength: Ultimate (UTS), MPa 540
630 to 700
Tensile Strength: Yield (Proof), MPa 190
310 to 440

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1390
1460
Melting Onset (Solidus), °C 1340
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
48
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 34
2.1
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.8
1.4
Embodied Energy, MJ/kg 83
19
Embodied Water, L/kg 230
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
83 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 94
260 to 510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
22 to 25
Strength to Weight: Bending, points 19
21 to 22
Thermal Diffusivity, mm2/s 3.2
13
Thermal Shock Resistance, points 12
20 to 22

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0.060 to 0.1
0.42 to 0.5
Chromium (Cr), % 25 to 29
0 to 0.4
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 29.4 to 42.6
97.3 to 99.08
Manganese (Mn), % 0 to 1.5
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 32 to 37
0 to 0.4
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.015
0 to 0.035
Titanium (Ti), % 0.15 to 0.6
0