MakeItFrom.com
Menu (ESC)

S35045 Stainless Steel vs. Grade 24 Titanium

S35045 stainless steel belongs to the iron alloys classification, while grade 24 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S35045 stainless steel and the bottom bar is grade 24 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 39
11
Fatigue Strength, MPa 170
550
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
40
Shear Strength, MPa 370
610
Tensile Strength: Ultimate (UTS), MPa 540
1010
Tensile Strength: Yield (Proof), MPa 190
940

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1100
340
Melting Completion (Liquidus), °C 1390
1610
Melting Onset (Solidus), °C 1340
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 12
7.1
Thermal Expansion, µm/m-K 16
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.0
4.5
Embodied Carbon, kg CO2/kg material 5.8
43
Embodied Energy, MJ/kg 83
710
Embodied Water, L/kg 230
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
110
Resilience: Unit (Modulus of Resilience), kJ/m3 94
4160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 19
63
Strength to Weight: Bending, points 19
50
Thermal Diffusivity, mm2/s 3.2
2.9
Thermal Shock Resistance, points 12
72

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
5.5 to 6.8
Carbon (C), % 0.060 to 0.1
0 to 0.080
Chromium (Cr), % 25 to 29
0
Copper (Cu), % 0 to 0.75
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 29.4 to 42.6
0 to 0.4
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 32 to 37
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.15 to 0.6
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4