MakeItFrom.com
Menu (ESC)

S35125 Stainless Steel vs. AISI 403 Stainless Steel

Both S35125 stainless steel and AISI 403 stainless steel are iron alloys. They have 54% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S35125 stainless steel and the bottom bar is AISI 403 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
16 to 25
Fatigue Strength, MPa 200
200 to 340
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 370
340 to 480
Tensile Strength: Ultimate (UTS), MPa 540
530 to 780
Tensile Strength: Yield (Proof), MPa 230
280 to 570

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Corrosion, °C 490
390
Maximum Temperature: Mechanical, °C 1100
740
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 12
28
Thermal Expansion, µm/m-K 16
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
6.5
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 6.4
1.9
Embodied Energy, MJ/kg 89
27
Embodied Water, L/kg 210
99

Common Calculations

PREN (Pitting Resistance) 30
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
210 to 840
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
19 to 28
Strength to Weight: Bending, points 18
19 to 24
Thermal Diffusivity, mm2/s 3.1
7.6
Thermal Shock Resistance, points 12
20 to 29

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.15
Chromium (Cr), % 20 to 23
11.5 to 13
Iron (Fe), % 36.2 to 45.8
84.7 to 88.5
Manganese (Mn), % 1.0 to 1.5
0 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 31 to 35
0 to 0.6
Niobium (Nb), % 0.25 to 0.6
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.030