MakeItFrom.com
Menu (ESC)

S44537 Stainless Steel vs. S43037 Stainless Steel

Both S44537 stainless steel and S43037 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 92% of their average alloy composition in common.

For each property being compared, the top bar is S44537 stainless steel and the bottom bar is S43037 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 21
25
Fatigue Strength, MPa 230
160
Poisson's Ratio 0.27
0.28
Rockwell B Hardness 80
77
Shear Modulus, GPa 79
77
Shear Strength, MPa 320
260
Tensile Strength: Ultimate (UTS), MPa 510
410
Tensile Strength: Yield (Proof), MPa 360
230

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 530
510
Maximum Temperature: Mechanical, °C 1000
880
Melting Completion (Liquidus), °C 1480
1440
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 21
25
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 3.4
2.3
Embodied Energy, MJ/kg 50
32
Embodied Water, L/kg 140
120

Common Calculations

PREN (Pitting Resistance) 26
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
88
Resilience: Unit (Modulus of Resilience), kJ/m3 320
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
15
Strength to Weight: Bending, points 18
16
Thermal Diffusivity, mm2/s 5.6
6.7
Thermal Shock Resistance, points 17
14

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 20 to 24
16 to 19
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 69 to 78.6
77.9 to 83.9
Lanthanum (La), % 0.040 to 0.2
0
Manganese (Mn), % 0 to 0.8
0 to 1.0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0.1 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.0060
0 to 0.030
Titanium (Ti), % 0.020 to 0.2
0.1 to 1.0
Tungsten (W), % 1.0 to 3.0
0