MakeItFrom.com
Menu (ESC)

S45000 Stainless Steel vs. C34500 Brass

S45000 stainless steel belongs to the iron alloys classification, while C34500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S45000 stainless steel and the bottom bar is C34500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 6.8 to 14
12 to 28
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
40
Shear Strength, MPa 590 to 830
220 to 260
Tensile Strength: Ultimate (UTS), MPa 980 to 1410
340 to 430
Tensile Strength: Yield (Proof), MPa 580 to 1310
120 to 180

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 840
120
Melting Completion (Liquidus), °C 1440
910
Melting Onset (Solidus), °C 1390
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 17
120
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
29

Otherwise Unclassified Properties

Base Metal Price, % relative 13
24
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 39
45
Embodied Water, L/kg 130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 160
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4400
69 to 160
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 35 to 50
12 to 15
Strength to Weight: Bending, points 28 to 36
13 to 16
Thermal Diffusivity, mm2/s 4.5
37
Thermal Shock Resistance, points 33 to 47
11 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 1.3 to 1.8
62 to 65
Iron (Fe), % 72.1 to 79.3
0 to 0.15
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 5.0 to 7.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
32 to 36.5
Residuals, % 0
0 to 0.4