MakeItFrom.com
Menu (ESC)

S46500 Stainless Steel vs. C95500 Bronze

S46500 stainless steel belongs to the iron alloys classification, while C95500 bronze belongs to the copper alloys. There are 23 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is S46500 stainless steel and the bottom bar is C95500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 2.3 to 14
8.4 to 10
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
44
Tensile Strength: Ultimate (UTS), MPa 1260 to 1930
700 to 850
Tensile Strength: Yield (Proof), MPa 1120 to 1810
320 to 470

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 780
230
Melting Completion (Liquidus), °C 1450
1050
Melting Onset (Solidus), °C 1410
1040
Specific Heat Capacity, J/kg-K 470
450
Thermal Expansion, µm/m-K 11
18

Otherwise Unclassified Properties

Base Metal Price, % relative 15
28
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 3.6
3.5
Embodied Energy, MJ/kg 51
57
Embodied Water, L/kg 120
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 43 to 210
58 to 61
Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 44 to 68
24 to 29
Strength to Weight: Bending, points 33 to 44
21 to 24
Thermal Shock Resistance, points 44 to 67
24 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
10 to 11.5
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
78 to 84
Iron (Fe), % 72.6 to 76.1
3.0 to 5.0
Manganese (Mn), % 0 to 0.25
0 to 3.5
Molybdenum (Mo), % 0.75 to 1.3
0
Nickel (Ni), % 10.7 to 11.3
3.0 to 5.5
Nitrogen (N), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.25
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 1.5 to 1.8
0
Residuals, % 0
0 to 0.5